Telegram Group & Telegram Channel
Large Language Models as Optimizers [2023]

Формулировка промпта серьёзно влияет на качество работы LLM. Именно здесь был найден тот самый "Take a deep breath and work on this problem step-by-step", дающий хорошую производительность. Попробуем разобраться в этой работе.

Авторы формулируют технику Optimization by PROmpting (OPRO), использующую LLM в качестве оптимизатора. На вход модели подаётся следующее:
1) Мета-промпт - описание, что и зачем оптимизируем. Вся полезная информация о задаче.
2) Пары "решение - скор". В ходе оптимизации будут генерироваться новые кандидаты. Все кандидаты сортируем по скору и добавляем топ лучших пар в этот вход

Далее мы запускаем эту штуку много раз и получаем всё более и более крутых кандидатов. Применять это можно в теории к чему угодно, хоть вместо градиентного спуска использовать. Но преимущество данного метода в том, что для него естественно языковое пространство, поэтому его используют для оптимизации промпта. Получается схема на картинке.

Из хорошего - промпт, генерируемый для определённой LLM на одном датасете, хорошо переносится на другой. Из плохого - промпты, хорошо работающие для одной LLM, не обязательно работают хорошо для другой LLM. Интересна природа таких отличий, ведь их претрейн должен быть +- похож, а вот дообучение на Human Feedback уже нет. Есть ли там хоть какая-то связь или это чистая случайность?

Возникает и другой вопрос - какова роль именно LLM в качестве оптимизатора? Вряд ли она в себе содержит представление о том, как разные конкретные LLM буду работать при разных промптах. Насколько такой оптимизатор является "умным", насколько он далёк от случайного перебора промптов?

Так или иначе, вновь мы видим доминацию оптимизации над человеческим проектированием. Возможно, какая-то большая и сложная оптимизация поверх LLM даст интересные плоды, но проблема в том, что сама LLM - очень большой вычислительный кусок, и его внутренности и обучение никак не оптимизируются. Но мы когда-нибудь заменим и их, тогда точно заживём.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/164
Create:
Last Update:

Large Language Models as Optimizers [2023]

Формулировка промпта серьёзно влияет на качество работы LLM. Именно здесь был найден тот самый "Take a deep breath and work on this problem step-by-step", дающий хорошую производительность. Попробуем разобраться в этой работе.

Авторы формулируют технику Optimization by PROmpting (OPRO), использующую LLM в качестве оптимизатора. На вход модели подаётся следующее:
1) Мета-промпт - описание, что и зачем оптимизируем. Вся полезная информация о задаче.
2) Пары "решение - скор". В ходе оптимизации будут генерироваться новые кандидаты. Все кандидаты сортируем по скору и добавляем топ лучших пар в этот вход

Далее мы запускаем эту штуку много раз и получаем всё более и более крутых кандидатов. Применять это можно в теории к чему угодно, хоть вместо градиентного спуска использовать. Но преимущество данного метода в том, что для него естественно языковое пространство, поэтому его используют для оптимизации промпта. Получается схема на картинке.

Из хорошего - промпт, генерируемый для определённой LLM на одном датасете, хорошо переносится на другой. Из плохого - промпты, хорошо работающие для одной LLM, не обязательно работают хорошо для другой LLM. Интересна природа таких отличий, ведь их претрейн должен быть +- похож, а вот дообучение на Human Feedback уже нет. Есть ли там хоть какая-то связь или это чистая случайность?

Возникает и другой вопрос - какова роль именно LLM в качестве оптимизатора? Вряд ли она в себе содержит представление о том, как разные конкретные LLM буду работать при разных промптах. Насколько такой оптимизатор является "умным", насколько он далёк от случайного перебора промптов?

Так или иначе, вновь мы видим доминацию оптимизации над человеческим проектированием. Возможно, какая-то большая и сложная оптимизация поверх LLM даст интересные плоды, но проблема в том, что сама LLM - очень большой вычислительный кусок, и его внутренности и обучение никак не оптимизируются. Но мы когда-нибудь заменим и их, тогда точно заживём.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/164

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

Knowledge Accumulator from de


Telegram Knowledge Accumulator
FROM USA